Naming, Writing Formulae & Equations

11-Sept-2009

SIMPLIFIED RULES FOR NAMING

Rules for naming compounds:

<u>Structure → Name</u>

1. If it begins with an H, it's an acid, except for water. You need to memorize the common acids:

H_2SO_4	Sulfuric Acid	H ₂ O Di-Hydrogen Oxide
HNO ₃	Nitric Acid	H-OH Hydrogen Hydroxide [always write like this]
HCl	Hydrochloric Acid	

2. What is the Cation [+], what is the name of the Cation element?

MgCl₂ Mg is the Cation and is Magnesium

3. Follow the rules below for naming.

Rules for naming compounds:

Name → Structure

1. Convert the Cation Name, the first name of the compound to a Chemical Symbol

Sodium → Na	Sodium Chloride	<u>Na</u> Cl
	Sodium Carbonate	<u>Na</u> ₂ CO ₃
	Iron (III) Carbonate	<u>Fe</u> ₂ (CO ₃) ₃
2. Convert the Anion Name to a Chem	ical Symbol	Chloride \rightarrow Cl
3. If the Anion is a Polyatomic, put down the correct formulae for it		Carbonate \rightarrow CO ₃
4. Put the charges for the Cation and A	nion above the element	Na ⁺¹ Cl ⁻¹
		Na ⁺¹ CO ₃ ⁻²
		Fe ⁺³ CO ₃ ⁻²

These charges come from various locations. Locate the Cation on the Periodic Table

- A. If the Cation is in Group I, the Alkaline Metals, its charge is +1
- B. If the Cation is in Group II, the Alkaline Earth Metals, it's charge is +2
- C. If the Cation is in the middle of the table, you must memorize the charge.
- D. If the Cation Name has a Roman Numeral after it, that is the charge Iron (III) \rightarrow Fe⁺³

Locate the Anion on the Periodic Table.

- 1. If the Anion is in Group VII, the Halides, it has a -1 charge
- 2. Else you must memorize the charge and structure of the Poly Atomic

Now put in the correct number for the subscripts, or multipliers for the charge, so the compound has

a net zero charge:	A.	Na ⁺¹ Cl ⁻¹ \rightarrow	Na ⁺¹ Cl ⁻¹	\rightarrow	NaCl
	B.	$Na^{+1} CO_3^{-2} \rightarrow$	Na ⁺¹ ₂ CO ₃ ⁻²	\rightarrow	Na ₂ CO ₃
	C.	Fe^{+3} CO ₃ ⁻² \rightarrow	Fe ⁺³ ₂ (CO ₃ ⁻²) ₃	\rightarrow	Fe ₂ (CO ₃) ₃

Note as a shortcut [but don't tell anyone!]

In C, note Fe has a +3 charge, CO₃ has -2 charge

The +3 charge for the iron now becomes the 3 subscript for the carbonate

The -2 charge for the carbonate now becomes the 2 subscript for the iron.

This Works – Use it!

Rules for Writing and Balancing and Equation:

.

5.01 grams of Iron (III) Carbonate is reacted with xcs [Excess] Sulfurous Acid. What are the products and how much of each is formed?

1. Translate the English to Chemical REACTANTS using the above rules (forget about charges for now)

$$Fe CO_3 + H_2SO_3$$

2. Balance the ions in each Reactant Compound so the net charge is zero [See Above]

→

$$Fe^{+3} CO_{3}^{-2} + H_{2}^{+1 \text{ each = +2}} SO_{3}^{-2} \rightarrow \text{Ions with charges}$$

$$Fe_{2}^{+3} (CO_{3})_{3}^{-2} + H_{2}^{+1 \text{ each = +2}} SO_{3}^{-2} \rightarrow \text{Need 2 Fe's and 3 CO}_{3} \text{ for a zero charge}$$

$$Fe_{2} (CO_{3})_{3} + H_{2}SO_{3} \rightarrow \text{Correct Reactants Formulae}$$

3. Determine the Products and write down the basic compounds.

$$AB + CD \rightarrow AD + CB$$
 Or $H_1W_1 + H_2W_2 \rightarrow H_1W_2 + H_2W_1$

Use the simple ionic exchange (again, forget about charges for now)

$$\operatorname{Fe}_{2}(\operatorname{CO}_{3})_{3} + \operatorname{H}_{2}\operatorname{SO}_{3} \xrightarrow{} \operatorname{Fe} \operatorname{SO}_{3} + \operatorname{H}(\operatorname{CO}_{3})$$

4. Balance the ions in each Product Compound so the net charge is zero

$\operatorname{Fe}_2(\operatorname{CO}_3)_3$	+	$H_2SO_3 \rightarrow$	Fe ⁺³ SO ₃ ⁻²	+	$H^{+1} (CO_3^{-2})$	Ions with charges
Fe ₂ (CO ₃) ₃	+	$H_2SO_3 \rightarrow$	Fe ₂ ⁺³ (SO ₃ ⁻²) ₃	+	$H^{+1}_{2}(CO_{3}^{-2})$	Need 2 Fe2 ⁺³ Need 3 (SO3 ⁻²)3 Need 1 H ⁺¹ 2 Need 1 (CO3) ⁻²
Fe ₂ (CO ₃) ₃	+	$H_2SO_3 \rightarrow$	Fe ₂ (SO ₃) ₃	+	$H_2 CO_3$	Drop the () around CO ₃

5. Balance the equation [See Below]so there are equal number of each element on each side of the reaction arrow

 $Fe_2(CO_3)_3 + 3H_2SO_3 \rightarrow Fe_2(SO_3)_3 + 3H_2CO_3$

<u>Fe</u>₂ (CO₃)₃ + H₂SO₃ \rightarrow Fe₂ (SO₃)₃ + H₂CO₃

1. Take one Cation, the element on the left side, from one compound on the Left [Reactant] side of the equation. I'll take the Fe – see underscore above. I usually take the most unusual or heaviest element.

2. There are 2 Fe's on the left side. How many are on the right Side.

- 3. There are 2 Fe's on the right side.
- 4. Attached to the Fe on the right is SO₃. There are 3 SO₃ on the right side. How many are on the left side?
- 5. There is 1 SO_3 on the left side. So, make it 3 like on the right side:

$$Fe_2 (CO_3)_3 + \underline{3} H_2 SO_3 \rightarrow Fe_2 (SO_3)_3 + H_2 CO_3$$

6. Attached to the SO₃ on the left side is 3 * 2 H's or $3 * H_2$ or 6 H's. How many are on the right side.

7. There is 1 H_2 on the right side, so make it 3 * 2 H's

 $Fe_2 (CO_3)_3 + \underline{3} H_2 SO_3 \rightarrow Fe_2 (SO_3)_3 + \underline{3} H_2 CO_3$

The equation is now balanced!

Sodium Chloride	Carbon Monoxide
Potassium Iodide	Nitrogen Dioxide
Calcium Sulfide	Selenium Hexafluoride
Cesium Bromide	Silicon Dioxide
Magnesium Oxide	DiHydrogen Monoxide
Cobalt (III) Chloride	Aluminum TriChloride
Copper (I) Iodide	
Tin (IV) Bromide	
Mercury (II) Chloride	
Lead (II) Sulfide	
Potassium Nitride	
Mercury (II) Oxide	
Rubidium Fluoride	
Sodium Hydride	
Chromium (II) Fluoride	
Magnesium Bromide	
Manganese (II) iodide	
Lithium Oxide	
Diiodine Heptoxide	
Carbon Dioxide	
Carbon Tetrafluoride	
Ammonia	
Ammonium Hydroxide	
Phosphorous Trichloride	

NaClO	
NaClO ₂	
KClO ₃	
KClO ₄	
(NH ₄) ₂ CO ₃	
NH ₄ NO ₂	
NH ₄ NO ₃	
K ₂ SO ₃	
Na ₂ SO ₄	
NaHSO ₃	
NaHSO ₄	
K ₂ CO ₃	
NaHCO ₃	
H ₂ SO ₄	
H ₂ SO ₃	
HI	
HF	
HNO ₃	
HNO ₂	

Naming Compounds Problems & Answ	vers
<u>11-Sept2009</u>	

Sodium Chloride	NaCl

Potassium Iodide KI

Calcium Sulfide <u>CaS</u>

- Cesium Bromide <u>CsBr</u>
- Magnesium Oxide <u>MgO</u>
- Cobalt (III) Chloride <u>CoCl</u>₃
- Copper (I) Iodide CuI
- Tin (IV) Bromide
 SnBr₄
- Mercury (II) Chloride <u>HgCl₂</u>
- Lead (II) Sulfide PbS
- Potassium Nitride <u>K₃N</u>
- Mercury (II) Oxide HgO
- Rubidium Fluoride <u>RbF</u>
- Sodium Hydride <u>NaH</u>
- Chromium (II) Fluoride <u>CrF₂</u>
- Magnesium Bromide <u>MgBr₂</u>
- Manganese (II) iodide <u>MnI2</u>
- Lithium Oxide <u>Li₂O</u>
- Diiodine Heptoxide <u>I₂O₇</u>
- Carbon Dioxide <u>CO₂</u>
- Carbon Tetrafluoride <u>CCl₄</u>
- Ammonia <u>NH3</u>
- Ammonium Hydroxide<u>NH4OH</u>

Phosphorous Trichloride	PCl ₃
Carbon Monoxide	CO
Nitrogen Dioxide	NO ₂
Selenium Hexafluoride	SeF ₆
Silicon Dioxide	SiO ₂
DiHydrogen Monoxide	<u>H</u> 2O
Aluminum TriChloride	AlCl ₃

NaClO	Sodium HypoChlorite
NaClO ₂	Sodium Chlorite
KClO ₃	Potassium Chlorate
KClO ₄	Potassium PerChlorate
(NH ₄) ₂ CO ₃	Ammonium Carbonate
NH ₄ NO ₂	Ammonium Nitrite
NH ₄ NO ₃	Ammonium Nitrate
K ₂ SO ₃	Potassium Sulfite
Na ₂ SO ₄	Sodium Sulfate
NaHSO ₃	Sodium Bisulfite
NaHSO ₄	Sodium Bisulfate
K ₂ CO ₃	Potassium Carbonate
NaHCO ₃	Sodium Bicarbonate
H ₂ SO ₄	Sulfuric Acid
H ₂ SO ₃	Sulfurous Acid
HI	HydroIodic Acid
HF	HydroFluoric Acid
HNO ₃	Nitric Acid
HNO ₂	Nitrous Acid

H_2SO_3	Sulfurous Acid	HF	Hydrofluoric Acid
H_2SO_4	Sulfuric Acid	HCl	Hydrochloric Acid
		HBr	HydroBromic Acid
HNO ₂	Nitrous Acid	HI	HyrdoIodic Acid
HNO ₃	Nitric Acid		
		HCN	HydroCyanic Acid
H ₃ PO ₄	Phosphoric Acid	H_2S	HydroSulfuric Acid
HC ₂ H ₃ O ₂	Acetic Acid		
CoBr ₂	+2 Cobalt (II) Bromide		forms +2 and +3 Cation
CaCl ₂	+2 Calcium Chloride		
Al ₂ O ₃	+3 Aluminum Oxide		
PbBr ₂	+2 Lead (II) Bromide		
PbBr ₄	+4 Lead (IV) Bromide		
FeS	+2 Iron (II) Sulfide		
Fe ₂ S ₃	+3 Iron (III) Sulfide		
AlBr ₃	+3 Aluminum Bromide		
Na ₂ S	+2 Sodium Sulfide		
CoCl ₃	+3 Cobalt (III) Chloride		
••	unds –NO Metal present.		
BF ₃	Boron Tri Fluoride	CCl ₄	Carbon Tetrachloride
NO	Nitrogen Monoxide	NO_2	Nitrogen DiOxide
N_2O_3	DiNitrogen Pentoxide	IF ₅	Iodine Penta Fluoride
CO	Carbon Monoxide		
CO_2	Carbon Dioxide		
H_2O	Di Hydrogen Monoxide		
PbO ₂	Lead (IV) Oxide		

FeCl ₃	Iron (III) Chloride
FeCl ₂	Iron (II)
CuCl	Copper (I) Chloride
HgO	Mercury (II) Oxide
Hg ₂ O	Mercury (I) Oxide
Fe ₂ O ₃	Iron (III) Oxide
MnO ₂	Manganese (IV) Oxide
PbCl ₄	Lead (IV) Chloride
CsF	Cesium Fluoride
AlCl ₃	Aluminum Chloride
MgI ₂	Magnesium Iodide
Rb ₂ O	Rubdium Oxide
SrI ₂	Strontium Iodide
K_2S	Potassium Sulfide
DCI	Dhaanhanana Danta Chlanida
PCl ₅	Phosphorous PentaChloride
P ₄ O ₆	Tetra Phosphorous HexaOxide Sulfur Hexa Fluroide
SF ₆	
SO ₃	Sulfur Tri Oxide Sulfur Di Oxide
SO ₂	Sullur Di Oxide
CuO	Copper (II) Oxide
SrO	Strontium (II) Oxide
Br ₂ O ₃	Di Bromine Tri Oxide
Ti Cl ₄	Titanium Penta Chloride
K_2S	Potassium Sulfide
OF ₂	Oxygen Di Fluoride
NH ₃	Nitrogen Tri Hydride [Ammonia]
ClF ₃	Chlorine Tri Fluoride
VF ₅	Vanadium (V) Fluoride
CuCl	Copper (I) Chloride
MnO ₂	Manganese (IV) Oxide
MgO	Magnesium Oxide
H ₂ O	Di Hyrogen Monoxide
O_2F_2	Di Oxygen Di Fluoride
XeF ₆	Xenon Hexa Fluoride