Naming, Writing Formulae \& Equations

 SIMPLIFIED RULES FOR NAMING

 SIMPLIFIED RULES FOR NAMING}

Rules for naming compounds:

Structure \rightarrow Name

1. If it begins with an H , it's an acid, except for water. You need to memorize the common acids:

$\mathbf{H}_{2} \mathrm{SO}_{4}$	Sulfuric Acid	$\mathbf{H}_{2} \mathrm{O} \quad$ Di-Hydrogen Oxide
$\mathbf{H N O}_{3}$	Nitric Acid	$\mathbf{H - O H}$ Hydrogen Hydroxide [always write like this]
$\mathbf{H C l}$	Hydrochloric Acid	

2. What is the Cation $[+]$, what is the name of the Cation element?
$\mathrm{MgCl}_{2} \quad \mathrm{Mg}$ is the Cation and is Magnesium
3. Follow the rules below for naming.

Rules for naming compounds:

Name \rightarrow Structure

1. Convert the Cation Name, the first name of the compound to a Chemical Symbol

Sodium $\rightarrow \mathbf{N a}$	Sodium Chloride	$\underline{\mathbf{N a C l}}$
	Sodium Carbonate	$\underline{\mathbf{N a}_{2} \mathrm{CO}_{3}}$
	Iron (III) Carbonate	$\underline{\mathbf{F e}_{2}}\left(\mathrm{CO}_{3}\right)_{3}$

2. Convert the Anion Name to a Chemical Symbol

Chloride $\rightarrow \mathbf{C l}$
3. If the Anion is a Polyatomic, put down the correct formulae for it

Carbonate $\rightarrow \mathbf{C O}_{3}$
4. Put the charges for the Cation and Anion above the element
$\mathrm{Na}^{+1} \quad \mathrm{Cl}^{-1}$
$\mathrm{Na}^{+1} \quad \mathrm{CO}_{3}{ }^{-2}$
$\mathrm{Fe}^{+3} \quad \mathrm{CO}_{3}{ }^{-2}$

These charges come from various locations. Locate the Cation on the Periodic Table
A. If the Cation is in Group I, the Alkaline Metals, its charge is +1
B. If the Cation is in Group II, the Alkaline Earth Metals, it's charge is +2
C. If the Cation is in the middle of the table, you must memorize the charge.
D. If the Cation Name has a Roman Numeral after it, that is the charge Iron (III) $\rightarrow \mathrm{Fe}^{+3}$

Locate the Anion on the Periodic Table.

1. If the Anion is in Group VII, the Halides, it has a -1 charge
2. Else you must memorize the charge and structure of the Poly Atomic

Now put in the correct number for the subscripts, or multipliers for the charge, so the compound has a net zero charge:
A. $\mathbf{N a}^{+1} \mathbf{C l}^{-1} \quad \rightarrow \quad \mathbf{N a}^{+1} \mathbf{C l}^{-1}$
$\rightarrow \quad \mathrm{NaCl}$
B. $\mathrm{Na}^{+1} \mathrm{CO}_{3}{ }^{-2} \rightarrow \quad \mathrm{Na}^{+1}{ }_{2} \mathrm{CO}_{3}{ }^{-2} \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{Fe}^{+3} \mathrm{CO}_{3}^{-2} \rightarrow \quad \mathrm{Fe}^{+3}{ }_{2}\left(\mathrm{CO}_{3}{ }^{-2}\right)_{3} \quad \rightarrow \quad \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$

Note as a shortcut [but don't tell anyone!]
In C , note Fe has $\mathrm{a}+3$ charge, CO_{3} has -2 charge
The +3 charge for the iron now becomes the 3 subscript for the carbonate
The -2 charge for the carbonate now becomes the 2 subscript for the iron. This Works - Use it!

Rules for Writing and Balancing and Equation:

5.01 grams of Iron (III) Carbonate is reacted with xcs [Excess] Sulfurous Acid. What are the products and how much of each is formed?

1. Translate the English to Chemical REACTANTS using the above rules (forget about charges for now)

$$
\mathrm{Fe} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow
$$

2. Balance the ions in each Reactant Compound so the net charge is zero [See Above]

$$
\begin{array}{lll}
\mathrm{Fe}^{+3} \mathrm{CO}_{3}^{-2}+\mathrm{H}_{2}{ }^{+1 \text { each }=+2} \mathrm{SO}_{3}^{-2} & \rightarrow & \text { Ions with charges } \\
\mathrm{Fe}_{2}^{+3}\left(\mathrm{CO}_{3}\right)_{3}^{-2}+\mathrm{H}_{2}^{+1 \text { each }=+2} \mathrm{SO}_{3}^{-2} & \rightarrow & \text { Need } 2 \mathrm{Fe} \text { 's and } 3 \mathrm{CO}_{3} \text { for a zero charge } \\
\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{SO}_{3} & \rightarrow & \text { Correct Reactants Formulae }
\end{array}
$$

3. Determine the Products and write down the basic compounds.

$$
\mathbf{A B}+\mathrm{CD} \rightarrow \mathbf{A D}+\mathbf{C B} \quad \text { Or } \quad \mathbf{H}_{1} \mathbf{W}_{1}+\mathrm{H}_{2} \mathrm{~W}_{2} \rightarrow \mathbf{H}_{1} \mathrm{~W}_{2}+\mathrm{H}_{2} \mathbf{W}_{\mathbf{1}}
$$

Use the simple ionic exchange (again, forget about charges for now)

$$
\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{SO}_{3} \quad \rightarrow \quad \mathrm{Fe} \mathrm{SO}_{3} \quad+\mathrm{H}\left(\mathbf{C O}_{3}\right)
$$

4. Balance the ions in each Product Compound so the net charge is zero

$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	$+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow$	$\mathrm{Fe}^{+3} \mathrm{SO}_{3}{ }^{-2}$	+	$\mathbf{H}^{+1}\left(\mathrm{CO}_{3}{ }^{-2}\right)$	Ions with charges
$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	$+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow$	$\mathrm{Fe}_{2}{ }^{+3}\left(\mathrm{SO}_{3}{ }^{-2}\right)_{3}$	+	$\mathbf{H}^{+1}\left(\mathrm{CO}_{3}{ }^{-2}\right)$	Need $2 \mathrm{Fe}_{2}{ }^{+3}$ Need $3\left(\mathrm{SO}_{3}{ }^{-2}\right)_{3}$ Need $1 \mathrm{H}^{+1}{ }_{2}$ Need $1\left(\mathrm{CO}_{3}\right)^{-2}$
$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	$+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow$	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3}$	+	$\mathrm{H}_{2} \mathrm{CO}_{3}$	Drop the () around CO_{3}

5. Balance the equation [See Below]so there are equal number of each element on each side of the reaction arrow

$$
\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+\mathbf{3} \mathrm{H}_{2} \mathrm{SO}_{3}->\quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3} \quad+\mathbf{3} \mathrm{H}_{2} \mathbf{C O}_{3}
$$

Rules for Balancing an Equation

$$
\underline{\mathrm{Fe}_{2}}\left(\mathrm{CO}_{3}\right)_{3}+\mathrm{H}_{2} \mathrm{SO}_{3} \quad \rightarrow \quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3} \quad+\mathrm{H}_{2} \mathrm{CO}_{3}
$$

1. Take one Cation, the element on the left side, from one compound on the Left [Reactant] side of the equation. I'll take the Fe - see underscore above. I usually take the most unusual or heaviest element.
2. There are 2 Fe's on the left side. How many are on the right Side.
3. There are 2 Fe 's on the right side.
4. Attached to the Fe on the right is SO_{3}. There are $3 \mathrm{SO}_{3}$ on the right side. How many are on the left side?
5. There is $1 \mathrm{SO}_{3}$ on the left side. So, make it 3 like on the right side:

$$
\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+\underline{\mathbf{3}} \mathrm{H}_{2} \mathrm{SO}_{3} \quad \rightarrow \quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3} \quad+\mathrm{H}_{2} \mathrm{CO}_{3}
$$

6. Attached to the SO_{3} on the left side is $3 * 2 \mathrm{H}$'s or $3 * \mathrm{H}_{2}$ or 6 H 's. How many are on the right side.
7. There is $1 \mathrm{H}_{2}$ on the right side, so make it $3 * 2 \mathrm{H}$'s

$$
\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+\underline{\mathbf{3}} \mathbf{H}_{2} \mathrm{SO}_{3} \quad \rightarrow \quad \mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3} \quad+\underline{\mathbf{3}} \mathbf{H}_{2} \mathrm{CO}_{3}
$$

The equation is now balanced!

Sodium Chloride	Carbon Monoxide
Potassium Iodide	Nitrogen Dioxide
Calcium Sulfide	Selenium Hexafluoride
Cesium Bromide	Silicon Dioxide
Magnesium Oxide	DiHydrogen Monoxide
Cobalt (III) Chloride	Aluminum TriChloride
Copper (I) Iodide	
Tin (IV) Bromide	
Mercury (II) Chloride	
Lead (II) Sulfide	
Potassium Nitride	
Mercury (II) Oxide	
Rubidium Fluoride	
Sodium Hydride	
Chromium (II) Fluoride	
Magnesium Bromide	
Manganese (II) iodide	
Lithium Oxide	
Diiodine Heptoxide	
Carbon Dioxide	
Carbon Tetrafluoride	
Ammonia	
Ammonium Hydroxide	

$\mathbf{N a C l O}$	
NaClO_{2}	
KClO_{3}	
KClO_{4}	
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	
$\mathbf{N H}_{4} \mathbf{N O}_{\mathbf{2}}$	
$\mathbf{N H}_{4} \mathbf{N O}_{3}$	
$\mathrm{K}_{2} \mathrm{SO}_{3}$	
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	
NaHSO_{3}	
NaHSO_{4}	
$\mathrm{K}_{2} \mathrm{CO}_{3}$	
NaHCO_{3}	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	
$\mathrm{H}_{2} \mathrm{SO}_{3}$	
HI	
HF	
HNO_{3}	
HNO_{2}	

$\frac{\text { Naming Compounds Pro }}{11-\text { Sept--2009 }}$	ns \& Answers
Sodium Chloride	NaCl
Potassium Iodide	KI
Calcium Sulfide	CaS
Cesium Bromide	CsBr
Magnesium Oxide	MgO
Cobalt (III) Chloride	CoCl_{3}
Copper (I) Iodide	CuI
Tin (IV) Bromide	SnBr_{4}
Mercury (II) Chloride	$\mathbf{H g C l}_{2}$
Lead (II) Sulfide	PbS
Potassium Nitride	$\mathrm{K}_{3} \underline{\mathrm{~N}}$
Mercury (II) Oxide	HgO
Rubidium Fluoride	RbF
Sodium Hydride	NaH
Chromium (II) Fluoride	CrF_{2}
Magnesium Bromide	$\mathbf{M g B r}_{2}$
Manganese (II) iodide	MnI_{2}
Lithium Oxide	$\mathrm{Li}_{2} \underline{\mathrm{O}}$
Diiodine Heptoxide	$\mathrm{I}_{2} \mathrm{O}_{7}$
Carbon Dioxide	CO_{2}
Carbon Tetrafluoride	CCl_{4}
Ammonia	NH_{3}
Ammonium Hydroxide	$\mathrm{NH}_{4} \mathrm{OH}$

Phosphorous Trichloride	PCl_{3}
Carbon Monoxide	CO
Nitrogen Dioxide	NO_{2}
Selenium Hexafluoride	SeF_{6}
Silicon Dioxide	SiO_{2}
DiHydrogen Monoxide	$\mathrm{H}_{2} \underline{\mathrm{O}}$
Aluminum TriChloride	AlCl_{3}

NaClO	Sodium HypoChlorite
NaClO_{2}	Sodium Chlorite
KClO_{3}	Potassium Chlorate
KClO_{4}	Potassium PerChlorate
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	Ammonium Carbonate
$\mathrm{NH}_{4} \mathrm{NO}_{\mathbf{2}}$	Ammonium Nitrite
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	Ammonium Nitrate
$\mathrm{K}_{2} \mathrm{SO}_{3}$	Potassium Sulfite
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium Sulfate
NaHSO_{3}	Sodium Bisulfite
NaHSO_{4}	Sodium Bisulfate
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Potassium Carbonate
NaHCO_{3}	Sodium Bicarbonate
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric Acid
$\mathrm{H}_{2} \mathrm{SO}_{3}$	Sulfurous Acid
HI	HydroIodic Acid
HF	HydroFluoric Acid
HNO_{3}	Nitric Acid
HNO_{2}	Nitrous Acid

$\left.\begin{array}{llll}\mathrm{H}_{2} \mathrm{SO}_{3} & \begin{array}{l}\text { Sulfurous Acid } \\ \mathrm{H}_{2} \mathrm{SO}_{4}\end{array} & \text { Sulfuric Acid } & \text { HF }\end{array} \begin{array}{l}\text { Hydrofluoric Acid } \\ \text { Hydrochloric Acid } \\ \text { HydroBromic Acid }\end{array}\right)$

Type III Compounds -NO Metal present.

$\mathbf{B F}_{3}$	Boron Tri Fluoride
$\mathbf{N O}^{2}$	Nitrogen Monoxide
$\mathbf{N}_{2} \mathrm{O}_{3}$	DiNitrogen Pentoxide
$\mathbf{C O}$	Carbon Monoxide
$\mathbf{C O}_{2}$	Carbon Dioxide
$\mathbf{H}_{2} \mathrm{O}$	Di Hydrogen Monoxide
$\mathbf{P b O}_{2}$	Lead (IV) Oxide

FeCl_{3}	Iron (III) Chloride
FeCl_{2}	Iron (II)
CuCl	Copper (I) Chloride
HgO	Mercury (II) Oxide
$\mathrm{Hg}_{2} \mathrm{O}$	Mercury (I) Oxide
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Iron (III) Oxide
MnO_{2}	Manganese (IV) Oxide
PbCl_{4}	Lead (IV) Chloride
CsF	Cesium Fluoride
AlCl_{3}	Aluminum Chloride
$\mathbf{M g I}_{2}$	Magnesium Iodide
$\mathrm{Rb}_{2} \mathrm{O}$	Rubdium Oxide
SrI_{2}	Strontium Iodide
$\mathrm{K}_{2} \mathrm{~S}$	Potassium Sulfide
PCl_{5}	Phosphorous PentaChloride
$\mathrm{P}_{4} \mathrm{O}_{6}$	Tetra Phosphorous HexaOxide
SF_{6}	Sulfur Hexa Fluroide
SO_{3}	Sulfur Tri Oxide
SO_{2}	Sulfur Di Oxide
CuO	Copper (II) Oxide
SrO	Strontium (II) Oxide
$\mathrm{Br}_{2} \mathrm{O}_{3}$	Di Bromine Tri Oxide
$\mathrm{Ti} \mathrm{Cl}_{4}$	Titanium Penta Chloride
$\mathrm{K}_{2} \mathrm{~S}$	Potassium Sulfide
OF_{2}	Oxygen Di Fluoride
NH_{3}	Nitrogen Tri Hydride [Ammonia]
ClF_{3}	Chlorine Tri Fluoride
VF_{5}	Vanadium (V) Fluoride
CuCl	Copper (I) Chloride
MnO_{2}	Manganese (IV) Oxide
MgO	Magnesium Oxide
$\mathrm{H}_{2} \mathrm{O}$	Di Hyrogen Monoxide
$\mathrm{O}_{2} \mathrm{~F}_{2}$	Di Oxygen Di Fluoride
XeF_{6}	Xenon Hexa Fluoride

